MEMORIAL DE CÁLCULO ESGOTO LOTEAMENTO RESIDENCIAL DE INTERESSE SOCIAL PEDRO VIEIRA CÁSSIA DOS COQUEIROS- SP

Apresentação

Relatório sobre a elaboração do Sistema de Esgotamento Sanitário para o Loteamento Residencial Loteamento de Interesse Social Pedro Vieira, através de regularização fundiária providenciada pela Prefeitura Municipal de Cássia dos Coqueiros – SP.

No local já existem casas com moradores instalados.

O projeto de Sistema de Esgotamento Sanitário consiste na Rede Coletora que se ligará a rede coletora existente.

Os documentos que serviram de base para a elaboração deste projeto foram o levantamento planialtimétrico cadastral da área em estudo e os projetos executivos de urbanismo e de terraplenagem.

Metodologia

Em análise ao projeto de implantação do loteamento, definem-se os trechos da rede coletora através das cotas do terreno. A rede coletora destina-se a somente receber esgotos domésticos e águas de infiltração.

População de Projeto

A população de projeto foi calculada considerando 4,0 pessoas por lote. O Loteamento Residencial de Interesse Social Pedro Vieira possui 53 lotes, mas a rede de esgoto implantada irá atender 42 unidades. As outras 11 unidades serão atendidas pela rede existente na Rua Zulmiro de Souza.

População de Projeto

Considerando 4,0 pessoas por lote.

Total de lotes: 42

 $4.0 \times 53 = 168 \text{ habitantes}.$

Determinação das Vazões de Projeto

Com a população de projeto inicial, o consumo per capta (q) e coeficiente de retorno (c), calcula-se a vazão doméstica média inicial (\overline{Q}_i):

$$Qi = \frac{Pop \times q \times 1,2 \times 1,5 \times 0,8}{86400}$$

Onde:

 $\overline{\mathbb{Q}}_{i}$ – Vazão doméstica média inicial (l/s);

Pop - População de projeto I (habitantes);

q - Consumo médio per capta (I/habxdia);

c – Coeficiente de retorno.

Ainda deve ser somada em cada trecho a taxa de contribuição linear.

$$T_{xi} = \frac{\overline{Q}_i \times K_2}{L_i} + T_{inf}$$

Onde: Txi – Taxa de contribuição linear (l/sxm);

Li – Comprimento da rede (m);

Tinf – Taxa de contribuição de infiltração (l/sxm). As vazões de projetos são calculadas à montante e à jusante de cada trecho.

Determinação do diâmetro da rede coletora

O dimensionamento da rede coletora é feito a partir da Equação de Manning, que é dada por:

$$\frac{\eta \times Q}{\sqrt{I}} = A \times R_H^{2/3}$$

Onde: η – Coeficiente de rugosidade do material das paredes dos condutos;

Q – Vazão do projeto (m³/s);

I – Declividade longitudinal do conduto (m/m);

A – Área molhada da seção transversal do conduto (m²);

RH - Raio hidráulico do conduto (m).

Determinação da velocidade de escoamento

A velocidade de escoamento é determinada através da Equação da continuidade.

$$Q = V \times A$$

Onde: Q - Vazão escoada (m3/s);

V – Velocidade de escoamento (m/s);

A – Área da seção transversal da canalização (m²).

Determinação da tensão trativa

É a componente tangencial do peso do líquido sobre a unidade de área da parede do coletor e que atua sobre o material sedimentado, provocando o seu arraste.

$$\sigma_{i} = \gamma \times R_{Hi} \times I$$

Onde: σi - Tensão trativa mínima (kgf/m²);

 γ - Peso específico da água (kgf/m³);

RHi – Raio hidráulico do conduto no início do plano (m);

I – Declividade longitudinal do conduto (m/m).

Determinação da velocidade crítica

$$V_{\text{C}} = 6 \times \sqrt{g \times R_{\text{HF}}}$$

Onde: VC – Velocidade crítica (m/s);

g – Aceleração da gravidade (m²/s);

RHF - Raio hidráulico do conduto no fim do plano (m).

Dimensionamento

Para o dimensionamento da rede coletora do loteamento, foi utilizada uma planilha de cálculo, onde apenas foram inseridos os dados do projeto, e para cada trecho, pré-determinados em planta; foram inseridos os comprimentos e cota de terreno.

Critérios

- Vazão mínima: 1,50 l/s;
- Diâmetro mínimo: 100 mm;
- Declividade mínima: que garanta pelo menos uma vez por dia a autolimpeza do coletor;
- Declividade máxima: não ultrapasse a velocidade de 5 m/s;
- Lâmina d'água máxima: 75% do diâmetro;
- Tensão trativa mínima: ≥ 1 MPa
- Velocidade crítica: a velocidade final de projeto deve ser menor que a velocidade crítica.

Dados do projeto

Na elaboração dos cálculos das redes coletoras de esgoto sanitário, foram adotados os seguintes parâmetros;

População

Consumo per capita	168 l/hab x dia
Taxa de infiltração	
Vazão mínima de dimensionamento	1,50 l/s
Declividade mínima	0,005m/m
Diâmetro mínimo do coletor	100 mm
Comprimento da rede	601,55 m
K1	
K2	1,50
η	0,013
Coeficiente de retorno	0,80

$$Qi = \frac{Pop \ x \ q \ x \ 1,2 \ x \ 1,5 \ x \ 0,8}{86400}$$

$$Qi = 0.56 l/s.$$

$$qd = \frac{Qi}{rede}$$

qd = 0,001764 l/s x m

Memorial Descritivo

Pelas características do loteamento e de acordo com informações da SABESP através de um laudo de vistoria ao local, não existe viabilidade para execução da rede de esgoto na rua e nem nas profundidades exigidas, a não ser com uso de explosivos.

Considerando que já existem casas construídas e moradores no local isto se torna inviável. .

Assim, a rede de esgoto, para atendimento dos imóveis, será executada na calçada com profundidade em torno de 60 cm em tubos PVC de esgotos com diâmetro de 100 mm, e para melhor proteção esta rede será envelopada com concreto.

A ligação de cada imóvel será feita com Tê PVC ocre 100 X 100 mm; devendo ser instalada uma válvula de retenção em cada ramal.

Características da rede: Tubo PVC ocre PB DN de 100 mm e 150 mm

Disposição Final do Efluente coletado

Os esgotos sanitários do loteamento após coletados e lançados na rede existente de 150 mm de diâmetro chegarão a Estação de Tratamento de Esgoto do município de Cássia dos Coqueiros.

Processo executivo

Escavação:

Serão abertas valas com profundidades determinadas pelo projeto. O fundo das valas será nivelado e preparado com o solo oriundo das escavações previamente escolhido e separado de pedras e qualquer material que possa danificar a tubulação.

Assentamento:

Rede coletora de esgoto sanitário

Os tubos em PVC rígido com diâmetro 100 mm com anel de borracha deverão ser assentados sucessivamente, obedecendo ao sentido ponta e bolsa, de forma que a ponta fique ao lado mais baixo do terreno, evitando concentração de matéria orgânica e vazamento nas bolsas.

As valas deverão ser escavadas mecanicamente com as dimensões suficientes em largura para o perfeito assentamento dos tubos da rede e ramais, de acordo com as profundidades definidas em projeto.

Sempre que necessário deverá ser utilizado escoramento, com painéis de tábuas fixados por longarinas e estroncas de madeira ou outro equipamento que atenda as especificações de segurança.

A locação, nivelamento e alinhamento no assentamento dos tubos deverão ser rigorosamente obedecidos segundo as cotas e distâncias do projeto.

Para o nivelamento das canalizações deverá ser considerada a geratriz superior e exterior da bolsa dos tubos

Poços de Visitas e Poços de Inspeção

Os poços de vista e inspeção serão construídos de acordo com o padrão SABESP.

Se forem de tijolos deverão ser revestidos, pelo menos internamente com argamassa de cimento e areia ou poderão ser em tubos de concreto com junta elástica, fornecidos por

empresas credenciadas pela SABEP

As canaletas de fundo deverão concordar em forma e declividade com os coletores que por ele passam ou façam junção. Serão de forma arredondadas sem cantos ou saliências.

Serão construídos de acordo com o projeto com a principal finalidade de manutenção da rede.

Aterro

O aterro será feito com o material oriundo das escavações. Conforme a rede vai sendo executada faz-se o recobrimento com solo devidamente livre de impurezas, O recobrimento será em camadas de 10 cm. compactado manualmente até 30 cm acima da geratriz superior do tubo e posteriormente as valas poderão ser aterradas de uma vez e compactadas mecanicamente, até o nível natural do terreno.

Rede coletora de esgoto/ ramais - Quantidades

Tubo PVC ocre para esgoto Ø 150 mm	52,90 m
Tubo PVC ocre para esgoto Ø 100 mm	432,11m
Poço de Visita pré-moldado	2,00 un
Poço de Inspeção pré-moldado	
Caixa de Inspeção	6,00 un
Tampão FoFo 600 mm padrão Sabesp	
Te PVC ocre para esgoto100 X 100 mm	42,00 un

Características dos Materiais

As tubulações e conexões serão em PVC Rígido, junta elástica e deverão obedecer as especificações da EB-644.

Os tubos coletores de esgotos de PVC, extrudado de cor ocre, com ponta, bolsa e junta elástica, deverão obedecer a NBR 7362-1 e 7362-2.

Tê PVC, moldado para coletor de esgotos com bolsa, junta elástica, cor ocre para ser utilizado em tubos fabricados de acordo com a NBR 7362-1. Curva 45 e ou 90º de PVC, injetado, para coletor de esgoto com bolsa e junta elástica, cor ocre para ser utilizado em tubos fabricados de acordo com a NBR 7363-1.

OBS: Os materiais deverão ter relatórios de inspeção e o fornecedor deverá ser qualificado pela SABESP.

REGULAMENTO DOS SERVIÇOS A SEREM EXECUTADOS

Segurança do trabalho

As mediadas de segurança do trabalho devem ser observadas em todas as fases da obra de acordo com as leis, normas e posturas oficiais que regem o assunto (escavações, fundações e desmonte de rochas - NR 18).

ENGENHEIRO RESPONSÁVEL

Responsável Técnico Eng.º: Geraldo Baldo Filho CREA nº 0400470120-SP ART – 28027230190707498